Twitter | Pretraživanje | |
Mingxing Tan
Google Brain
47
Tweetovi
41
Pratim
554
Osobe koje vas prate
Tweetovi
Mingxing Tan proslijedio/la je tweet
Jeff Dean 9. sij
What I did over my winter break! It gives me great pleasure to share this summary of some of our work in 2019, on behalf of all my colleagues at & .
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 4. pro
This video explains AdvProp. Thanks !
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 2. pro
Odgovor korisniku/ci @wightmanr @A_K_Nain i 4 ostali
My first principle is to reduce model size and computation. However, I agree hardware have different demands: e.g., depthwise conv is fast on CPU, but slow on GPU. In future, we may apply NAS to design GPU-specific models. If you have good ideas on that, please let me know :)
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 2. pro
Odgovor korisniku/ci @wightmanr @A_K_Nain i 4 ostali
You might want to compare EfficientNet-B0 with ResNet101 , since they have similar ImageNet acc (77.3%). EfficientNets are more friendly to mobile CPU or accelerators (~10x faster than ResNet-50 on EdgeTPU: ). More optimizations needed for GPUs.
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 29. stu
Odgovor korisniku/ci @assthiam19 @quocleix @ruomingpang
Yes, you can. They are tflite compatible.
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 26. stu
Odgovor korisniku/ci @klimov_k_v @quocleix
Hi Kirill, good question! we use separate scale/offset and stats.
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan proslijedio/la je tweet
Ross Wightman 23. stu
Odgovor korisniku/ci @tanmingxing @quocleix
The TLDR of the paper; use adversarial examples as training data augmentation, maintain separate BatchNorm for normal vs adversarial examples. Neat. As usual I've ported & tested weights
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 25. stu
Can adversarial examples improve image recognition? Check out our recent work: AdvProp, achieving ImageNet top-1 accuracy 85.5% (no extra data) with adversarial examples! Arxiv: Checkpoints:
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 23. stu
Odgovor korisniku/ci @jeremyphoward @quocleix @ruomingpang
Thanks!
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 22. stu
Excited to share our work on efficient neural architectures for object detection! New state-of-the-art accuracy (51 mAP on COCO for single-model single-scale), with an order-of-magnitude better efficiency! Collaborated with and .
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan proslijedio/la je tweet
Quoc Le 12. stu
Odgovor korisniku/ci @quocleix
Full comparison against state-of-the-art on ImageNet. Noisy Student is our method. Noisy Student + EfficientNet is 11% better than your favorite ResNet-50 😉
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan proslijedio/la je tweet
Quoc Le 12. stu
Want to improve accuracy and robustness of your model? Use unlabeled data! Our new work uses self-training on unlabeled data to achieve 87.4% top-1 on ImageNet, 1% better than SOTA. Huge gains are seen on harder benchmarks (ImageNet-A, C and P). Link:
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 4. stu
Odgovor korisniku/ci @jeremyphoward @wightmanr @quocleix
Good to know! How much improvement did you get? IIRC, by changing the last stride=2 to stride=1 (final output shape becomes 14x14) for Efficientnet-B0, you would get around 1% accuracy gain, with the cost of more computations in the last few layers.
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 4. stu
Odgovor korisniku/ci @jeremyphoward @wightmanr @quocleix
Excellent question! It is more like a tradition. However, later stage layers need a lot of params, so it is better to not add many extra layers in later stage if is a concern. EfficientNets use the same tradition, mostly to keep the scaling simple and to minimize params
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan proslijedio/la je tweet
Jeff Dean 26. lis
Great to see this collaboration between Google researchers & engineers launch, with major improvement to search quality! The work brings together many things we've been working on over the last few years: Transformers, BERT, , TPU pods, ...
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 18. lis
AutoML for video neural architecture design. Results are quite promising!
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 19. ruj
Odgovor korisniku/ci @ajlavin @quocleix
Hi Andrew, Good point! I will update the paper to make it explicit (also replied on Github). FYI, the purpose of group conv is to reduce the FLOPS in pointwise convs, so we have more FLOPS budge for bigger kernel sizes (since the total FLOPS is constrained).
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 7. kol
Odgovor korisniku/ci @karanchahal96 @quocleix
Hi Karanbir, AutoML has evolved: recent algorithms (such as DARTS ) can finish a search in a couple of GPU hours.
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 6. kol
Introducing EfficientNet-EdgeTPU: customized for mobile accelerators, with higher accuracy and 10x faster inference speed. blog post: Code and pertained models:
Reply Retweet Označi sa "sviđa mi se"
Mingxing Tan 1. kol
Odgovor korisniku/ci @_wkong @quocleix
Depends on how many TPUs are used. Usually takes a couple of days.
Reply Retweet Označi sa "sviđa mi se"