Twitter | Pretraživanje | |
solifine
A group is a set with a distinguished element e and a binary operation [ , ] satisfying: ‣ [a,b] = [[a,c],[b,c]] ‣ [a,e] = a ‣ [a,a] = e for all a,b,c.
Reply Retweet Označi sa "sviđa mi se" More
John Carlos Baez 31. pro
Odgovor korisniku/ci @solifine
Nice! To make this familiar to the unwashed masses, write [a,b] = ab^{-1}.
Reply Retweet Označi sa "sviđa mi se"
solifine 31. pro
Odgovor korisniku/ci @johncarlosbaez
Yeah for the rest of the year, I'm only going to think about division! Goodbye, multiplication and composition.
Reply Retweet Označi sa "sviđa mi se"
Heteroclitus Maximus 1. sij
Odgovor korisniku/ci @solifine @vikasF22
Form a ring with one more operator.
Reply Retweet Označi sa "sviđa mi se"
solifine 1. sij
Odgovor korisniku/ci @RangaTheDude @vikasF22
I suspect there's nothing interesting to do for the ring multiplication, because this definition really relies on having inverses. But one thing you'd want to do anyway is express the notion of "abelian group". The best I can do is ‣ [a,b]=[[e,b],[e,a]]
Reply Retweet Označi sa "sviđa mi se"
Francis 1. sij
Odgovor korisniku/ci @solifine
It looks like you can reduce the axioms further to the structure of the division map [ , ] subject to the axioms that [a,b] = [[a,c],[b,c]] and that all [a,a] are equal to a single element.
Reply Retweet Označi sa "sviđa mi se"
solifine 1. sij
Odgovor korisniku/ci @Francis16833887
I don't know how you'd get out of insisting [a,[a,a]]=a. But otherwise it's fine to do this… that's how it is presented in Hall's book actually.
Reply Retweet Označi sa "sviđa mi se"
JohnMeuser 1. sij
Odgovor korisniku/ci @solifine @johncarlosbaez
can mention of the identity element be dropped with these three equations? [a,b]=[[a,c],[b,c]] [a,[b,b]]=a [a,a]=[b,b] What do we get with just [a,b]=[[a,c],[b,c]] [a,[b,b]]=a ?
Reply Retweet Označi sa "sviđa mi se"
John Carlos Baez 1. sij
Odgovor korisniku/ci @JohnMeuser @solifine
Yes, you can drop mention of the identity as mentioned. In group theory there's a famous easy proof that if ax = a for all a and ya = a for all a then x = y, so if there are right units and left units they must all be equal.
Reply Retweet Označi sa "sviđa mi se"
Shahid Nawaz 1. sij
Odgovor korisniku/ci @solifine
What notation is this?
Reply Retweet Označi sa "sviđa mi se"
Pavel Roskin 1. sij
Odgovor korisniku/ci @solifine
Easy to show on a Rubik's cube. Any combination of moves is a group element. The comma is performing the first operand, then _reverting_ the second operand.
Reply Retweet Označi sa "sviđa mi se"