Twitter | Pretraživanje | |
solifine
in my house we have jump scares
326
Tweetovi
17
Pratim
184
Osobe koje vas prate
Tweetovi
solifine 2. velj
Odgovor korisniku/ci @Category_Fury
i wrote an abstract about a segal operad yesterday
Reply Retweet Označi sa "sviđa mi se"
solifine 2. velj
Odgovor korisniku/ci @davidad
Reply Retweet Označi sa "sviđa mi se"
solifine proslijedio/la je tweet
davidad 🎇 2. velj
For years, the MMDDYY and DDMMYY crowds have pointed out patterns in “the date” that are meaningless to me, but finally today’s date is a palindrome in the one true format, YYYYMMDD!
Reply Retweet Označi sa "sviđa mi se"
solifine 2. velj
Odgovor korisniku/ci @CreeepyJoe
you should do one explaining how a simplicial set determines a cooperad
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
I talked about an example of this before, namely when X is the nerve of a category. More can be found in §3.6 of Dyckerhoff–Kapranov's "Higher Segal Spaces". ⌊16⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
If X happens to be "2-Segal" then this cooperad is "invertible". This means we can reverse the structure maps (which are bijections), and so our simplicial set is also an operad. ⌊15⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
For each simplicial set X, we have produced an X(1)-colored cooperad [in (Set,×,∗)]. ⌊14⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
For 1≤j≤n, the jth "input color" of x∊X(n) is given by the interval inclusion [1] → [n] in 𝚫 that sends 0 to j-1 and 1 to j. ⌊13⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
More specifically, this is an X(1)-colored cooperad. The "output color" of an element x ∊ X(n) is found using the endpoint preserving function [1] → [n] in 𝚫 (that is, 0↦0, 1↦n). ⌊12⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
Because the maps γ were not injective, the cocomposition map X(Σmᵢ) → X(r)×(X(m₁)×⋯×X(mᵣ)) lands in a smaller subset. ⌊11⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
It follows that the maps γ from above give functions X(Σmᵢ) → X(r)×(X(m₁)×⋯×X(mᵣ)) and the unique map ∅ → [1] gives X(1) → hom(∅,X) = ∗. ⌊10⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
Are you satisfied that the standard simplices form an operad? If so, let X be a simplicial set. We know that hom(A⨿B,X) = hom(A,X)×hom(B,X) and X(n) = hom(Δⁿ,X). (here, hom means "simplicial set morphisms", while earlier it meant morphisms in 𝚫) ⌊09⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
To see that this is an operad, one must check that the "two ways" of getting from [r] ⨿ (∐_{i=1}^r [mᵢ] ⨿ (∐_{j=1}^{mᵢ} [nᵢⱼ])) to [Σnᵢⱼ] are the same. ⌊08⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
Define γ(i,r)=m₁+⋯+mᵢ and γ(k,mᵢ)=γ(i-1,r)+k. Here's a picture of where the images of the first few elements land inside of [Σmᵢ]. ⌊07⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
(ofc you should be careful, bc in real life you could have, like, m₁=m₂=r=5 and then you'll get confused) ⌊06⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
To write the operadic multiplications γ: [r] ⨿ ([m₁] ⨿ ⋯ ⨿ [mᵣ]) → [Σmᵢ], maybe it's good to write elements like (k,r) and (k,mᵢ) to specify which component we're starting in. ⌊05⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
What are the operad structure maps? The tensor unit for ⨿ is ∅, so we don't have any choice about the "unit" ∅ → Δ¹ = [1] in our operad. ⌊04⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
The objects of the simplicial category 𝚫 are [n] = {0 < 1 < ⋯ < n}, for n≥0, and instead of writing Δⁿ for the representable simplicial set hom(-,[n]), let's just write [n]. (Mostly so we can actually write [mᵢ] on twitter!) ⌊03⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Odgovor korisniku/ci @solifine
First off, the standard simplices Δⁿ (as n≥0 varies) form an operad in simplicial sets. Wait wait, simplicial sets with COPRODUCT as the monoidal product! How does this work? ⌊02⌋
Reply Retweet Označi sa "sviđa mi se"
solifine 1. velj
Every simplicial set X is a (nonsymmetric) cooperad, whose n-ary cooperations are precisely the n-simplices of X. Why? Where do the cooperadic cocompositions come from? ⌊01⌋
Reply Retweet Označi sa "sviđa mi se"