Twitter | Pretraživanje | |
Quoc Le
AdvProp: One weird trick to use adversarial examples to reduce overfitting. Key idea is to use two BatchNorms, one for normal examples and another one for adversarial examples. Significant gains on ImageNet and other test sets.
Reply Retweet Označi sa "sviđa mi se" More
Quoc Le 25. stu
Odgovor korisniku/ci @quocleix
Many of us tried to use adversarial examples as data augmentation and observed a drop in accuracy. And it seems that simply using two BatchNorms overcomes this mysterious drop in accuracy.
Reply Retweet Označi sa "sviđa mi se"
Quoc Le 25. stu
Odgovor korisniku/ci @quocleix
As a data augmentation method, adversarial examples are more general than other image processing techniques. So I expect AdvProp to be useful everywhere (language, structured data etc.), not just image recognition.
Reply Retweet Označi sa "sviđa mi se"
Quoc Le 26. stu
Odgovor korisniku/ci @quocleix
AdvProp improves accuracy for a wide range of image models, from small to large. But the improvement seems bigger when the model is larger.
Reply Retweet Označi sa "sviđa mi se"
Quoc Le 26. stu
Odgovor korisniku/ci @wightmanr
Pretrained checkpoints in Pytorch: h/t to
Reply Retweet Označi sa "sviđa mi se"
Jim Dowling 25. stu
Odgovor korisniku/ci @quocleix
This is becoming ridiculous. you are the Serge Bubka of ImageNet, breaking your own records every 2nd week!
Reply Retweet Označi sa "sviđa mi se"
Jim Dowling 25. stu
Odgovor korisniku/ci @quocleix
Next week, you will combine Noisy Student (data) and AdvProp (compute) to beat ImageNet again. Go Sergey! The "compute/data tradeoff for structure" story just keeps on giving.
Reply Retweet Označi sa "sviđa mi se"
Aziz 25. stu
Odgovor korisniku/ci @quocleix
Nice job 👍, have you tried other normalization techniques: like layer normalization or weight normalization?? I am just curious here
Reply Retweet Označi sa "sviđa mi se"