Twitter | Pretraživanje | |
Quoc Le 12. stu
Want to improve accuracy and robustness of your model? Use unlabeled data! Our new work uses self-training on unlabeled data to achieve 87.4% top-1 on ImageNet, 1% better than SOTA. Huge gains are seen on harder benchmarks (ImageNet-A, C and P). Link:
Reply Retweet Označi sa "sviđa mi se"
Quoc Le 12. stu
Odgovor korisniku/ci @quocleix
Example predictions on robustness benchmarks ImageNet-A, C and P. Black texts are correct predictions made by our model and red texts are incorrect predictions by our baseline model.
Reply Retweet Označi sa "sviđa mi se"
Quoc Le 12. stu
Odgovor korisniku/ci @quocleix
Full comparison against state-of-the-art on ImageNet. Noisy Student is our method. Noisy Student + EfficientNet is 11% better than your favorite ResNet-50 😉
Reply Retweet Označi sa "sviđa mi se"
Quoc Le
Method is also super simple: 1) Train a classifier on ImageNet 2) Infer labels on a much larger unlabeled dataset 3) Train a larger classifier on the combined set 4) Iterate the process, adding noise
Reply Retweet Označi sa "sviđa mi se" More
Quoc Le 13. stu
Odgovor korisniku/ci @quocleix
I also highly recommend this nice video that explains the paper very well:
Reply Retweet Označi sa "sviđa mi se"
Rishabh Agarwal 12. stu
Odgovor korisniku/ci @quocleix
I feel that Q-learning in RL does something similar (predicting a guess from a guess) although we don't have any labels to start with. It would be interesting if developments here turn out to be useful for RL.
Reply Retweet Označi sa "sviđa mi se"
Dhruv Shah 13. stu
Odgovor korisniku/ci @rishabh_467 @quocleix
That's an interesting point! My first thought reading this was the classic DYNA-style training routine () Really excited to see ideas re-spawning! :D
Reply Retweet Označi sa "sviđa mi se"
Abhishek Srivastav 12. stu
Odgovor korisniku/ci @quocleix
Any quick intuition on what is the source of new information that the model is picking up?
Reply Retweet Označi sa "sviđa mi se"
Qizhe Xie 13. stu
Odgovor korisniku/ci @abhisri14 @quocleix
Adding noise to the student model is important so that the student can outperform the teacher.
Reply Retweet Označi sa "sviđa mi se"
彡Sαι彡 13. stu
Odgovor korisniku/ci @quocleix @santhoshkolloju
Reply Retweet Označi sa "sviđa mi se"
olti 13. stu
Odgovor korisniku/ci @quocleix
Whereas people usually tend to make look difficult what is easy, you say it's easy. 👏👏👏
Reply Retweet Označi sa "sviđa mi se"
Cinjon Resnick 13. stu
Odgovor korisniku/ci @quocleix
Is this equivalent to ensembling?
Reply Retweet Označi sa "sviđa mi se"
Mohamed Hamed 13. stu
Odgovor korisniku/ci @quocleix
Simple and effective, great job :)
Reply Retweet Označi sa "sviđa mi se"
Andrew Davison 13. stu
Odgovor korisniku/ci @quocleix @liu_shikun
Reply Retweet Označi sa "sviđa mi se"
Shikun Liu 13. stu
Odgovor korisniku/ci @AjdDavison
Thanks Andy. It would be quite useful to evaluate my Adobe project on a new/ much difficult Imagenet test set. But tbh, I read this abstract and felt that...the power of making this level of compute could already feed a small country in Africa for 3 months...
Reply Retweet Označi sa "sviđa mi se"