Twitter | Pretraživanje | |
Jeremy Brazas
Meet the Hawaiian mapping torus - the mapping torus of the shift map. First singular homology is infinite cyclic generated by inner loop. Can you find the non-trivial elements of H_2? If you look at the image, it might feel H_2 is trivial since there is no "enclosed space!"
Reply Retweet Označi sa "sviđa mi se" More
Akiva Weinberger 22. pro
Odgovor korisniku/ci @jtbrazas @blockspins
Let L be a loop in the Hawaiian earring and let S be the shift map. If S(L) is homologous to L, then we can construct an element of H_2 by sort of making a cylinder of L on one side and S(L) on the other, and join them at the edge because they're homologous, if that makes sense
Reply Retweet Označi sa "sviđa mi se"
Akiva Weinberger 22. pro
Odgovor korisniku/ci @jtbrazas @blockspins
So now we need an L. If a_n is the loop around the nth circle, I think a_1+a_2−a_1+a_3−a_2+a_4−a_3+… works, but I'm having a hard time proving that it's not nullhomologous.
Reply Retweet Označi sa "sviđa mi se"