Twitter | Pretraživanje | |
Ilya Sutskever
The reason most (not all) methods don't add value (over baseline) when scaled is because they're "extra training data in disguise", so their benefit vanishes in the high data regime
Reply Retweet Označi sa "sviđa mi se" More
Jan van Gemert 7. tra
Odgovor korisniku/ci @ilyasut
Well.. *All* current deep learning and machine learning is just "data in disguise": the 1-nearest neighbor algorithm converges to the best possible classifier just by adding more data. (converges to twice the Bayes error with infinite samples; )
Reply Retweet Označi sa "sviđa mi se"
Vixtor Namaste 7. tra
Odgovor korisniku/ci @ilyasut
"extra training data in disguise" ? can you plz elaborate.?
Reply Retweet Označi sa "sviđa mi se"
Dzmitry Pletnikau 8. tra
Odgovor korisniku/ci @_rdm_8 @ilyasut
"New" algorithms introduce hardcoded prior "structure" to the solution, which baseline is capable of learning on its own, given enough data. Therefore, on large data sets, "new" loses its advantage over baseline.
Reply Retweet Označi sa "sviđa mi se"
Hassaan Hashmi 7. tra
Odgovor korisniku/ci @ilyasut
Should we, then, introduce a "Scalability score" metric for the algorithms; kind of like what the DxOmark is for cameras.
Reply Retweet Označi sa "sviđa mi se"