Twitter | Pretraživanje | |
Pretraživanje Osvježi
endless bummer 28. velj
Odgovor korisniku/ci @awakenflatearth
The shortest arc between two points on a sphere is created by a plane that intersects those two points and the center of the sphere. Notice that it’s a sphere
Reply Retweet Označi sa "sviđa mi se"
Bennett McNulty 1. pro
Spending Sunday afternoon making conic sections via the intersections of two projective (non-perspective) pencils of points.
Reply Retweet Označi sa "sviđa mi se"
GBC Mathematics Club 27. velj 2014.
Girard Desargues (1591-1661) was a French engineer, who is considered one of the founders of .
Reply Retweet Označi sa "sviđa mi se"
WAE Center 25. lip 2013.
Mr Malinsky led the 2nd workshop in today...members LOVED it! Got the brains working in new ways!
Reply Retweet Označi sa "sviđa mi se"
Santosh Desani 20. sij 2018.
Odgovor korisniku/ci @Nibha_27
Looks like your sneezes are parallel lines which intersects at a point which lies on the line at infinity ! :)
Reply Retweet Označi sa "sviđa mi se"
Ivan F (деда Вангла) 13. tra 2017.
Odgovor korisniku/ci @dehammo
parallel lines intersect at a point which lies on the line at infinity. you can't stop their love! 😍
Reply Retweet Označi sa "sviđa mi se"
Alyssa Pohahau 22. lis 2013.
A drawing I did for a hw assgn
Reply Retweet Označi sa "sviđa mi se"
KimosaBAE 20. srp 2011.
Two parallel lines meet at infinity.
Reply Retweet Označi sa "sviđa mi se"
Zoltan Takacs 21. stu 2012.
Gerard Desargues … what have you done to me???
Reply Retweet Označi sa "sviđa mi se"
Lisa Pfnuer 4. lip 2018.
Reply Retweet Označi sa "sviđa mi se"
Scoffing Mathematician 🏳️‍🌈🇪🇺 2. kol
Odgovor korisniku/ci @sigfpe
If you like this and would like to make it rigorous, learn ! Founded by artists, studied by mathematicians, applied by physicists and internet security protocols.
Reply Retweet Označi sa "sviđa mi se"
Prashant Dixit 20. stu 2017.
'Two parallel lines meets at Infinity' But they are Parallel then how come they ever meet ? .... 😉😐😏😶
Reply Retweet Označi sa "sviđa mi se"
Louis Maddox 17. ožu
Reply Retweet Označi sa "sviđa mi se"
Will Stone 30. sij
My glass of coffee that I sketched while waiting on a friend. I was fascinated by how the reflection of the napkin mapped onto the glass.
Reply Retweet Označi sa "sviđa mi se"
Virgilio Sison 25. lis
The real projective line is a circle, while the complex projective line is a sphere.
Reply Retweet Označi sa "sviđa mi se"
Virgilio Sison 13. kol
The points of the real projective line are lines through the origin in the real number plane. The point at infinity is, for convenience, either the vertical axis or the horizontal axis.
Reply Retweet Označi sa "sviđa mi se"
Virgilio Sison 8. kol
The real projective plane PG(2,R) is equivalent to R^2 together with the line at infinity L. The line at infinity L, and all lines in PG(2,R), are equivalent to PG(1,R), the real projective line, which is topologically a circle.
Reply Retweet Označi sa "sviđa mi se"
Louis Maddox 18. ožu
Odgovor korisniku/ci @solvemymaths @DynamicsSIAM
Some of my favourites (so far all of which have been very good!) Some are v thin e.g. Mazur, Arnold, but all excellent.
Reply Retweet Označi sa "sviđa mi se"
Anthony Bordg 15. srp 2018.
Now, one can play with using the theorem prover.
Reply Retweet Označi sa "sviđa mi se"
Scoffing Mathematician 🏳️‍🌈🇪🇺 25. ožu 2018.
Odgovor korisniku/ci @matthen2 @monsoon0
To a nonsingular plane conic C and two points in P^2, we associate a rational map f from S :=S^2C to P^2. Find a minimal resolution of indeterminacy g fit f. Compute deg g. Determine the locus where dg isn't an isomorphism.
Reply Retweet Označi sa "sviđa mi se"